The 19th Crucifer Genetics Workshop and Brassica 2014 "Genetic Improvement of Brassicaceae Crops in the Era of Genomics"

Comparative epigenomic analysis between model plant and crop

Xiaofeng Cao

Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing

March 31-April 3, 2014, Wuhan

Mechanisms of epigenetic regulation in higher plants

-DNA methylation

-Histone modification and variants

-Regulatory non-coding RNAs

Core of 8 Histone Molecules

Nucleosome

Endogenous small RNA in plants

- Higher plants are enriched in two types of endogenous small RNAs: microRNAs (miRNAs) and small interfering RNA (siRNAs)
- 21-24nt in length of non-coding RNAs
- Play key roles in regulation of development, various biotic and

abiotic stress responses and genome stability

Mechanisms of small RNAs silencing

Dicer: a key protein in small RNA biogenesis

Higher plants have evolved multiple members of RNase III family of proteins

Different functions of DCLs in Arabidopsis

- DCL1: 21-22nt miRNA, developmental control
- DCL2: 22nt siRNA, virus induced siRNAs
- DCL3: 24nt siRNA, RdDM/chromatin
- DCL4: 21nt siRNA and ta-siRNA, RNA degradation

Schematic representation of conserved motifs among DCL proteins in rice

Morphology of *OsDCL1IR* plants showing pleiotropic phenotypes

- The dlc1 null in Arabidopsis and rice are lethal.
- The weak OsDCL1IR lines: narrow, rolled, outward-folded leaves; fewer adventitious roots; fewer tillers; No homozygous obtained in later generations

OsDCL1 is required for miRNA accumulation

Liu et al., (2005) Plant Physiology

Rice miRNA156/OsSPL14 pair has significant impacts on breeding: 'ideal' plant architecture (IPA)

- Illustrates how regulatory variation at the rice gene OsSPL14 can lead to altered plant morphology and improve grain yield.
- Supports the possibility of improving rice yield through changing miRNA/target pair for altering plant architecture.

Jiao Y, et al. (2010) Nat Genet 42(6):541-544. Miura K, et al. (2010) Nat Genet 42(6):545-549. Springer N (2010) Nat Genet 42(6):475-476.

ta-siRNA: cross talk between miRNA and siRNA

ARF3 and ARF4 are targets of TAS3 tasiRNAs (tasiR-ARFs) in Arabidopsis

- Narrow and curly leaves
- Accelerated juvenile to adult phase change

Xie *et al.,* (2005) PNAS Yoshikawa *et al.,* (2005) Gene & Dev

Knockdown of OsDCL4 results in abnormal spikelet morphology

In Nipponbare (Japonica variety) background

Liu et al., (2007) Plant Cell

Rice DCL4 plays broader roles in developmental regulation than its Arabidopsis counterpart

WT

osdcl4-1

osdcl4-1

WT

- Abnormal spikelet with degenerated lemma
- Affects coleoptiles and first leaf sheath in early vegetative development
- Altered lateral organ polarity and vascular tissue development

OsDCL4 catalyzes 21nt siRNA production

In vitro

biochemical analysis

Inverted repeats associated with transgenes or endogenous genes

Regulation of ARFs by OsDCL4

OsDCL4 activities.

21 nt ta-siRNAs

• Impaired OsDCL4 results in up regulation of ARFs.

Xianwei Song

A point mutation in *rdr6* is responsible for mutant phenotypes

Proper level of ARF expression is important for plant development in rice

show developmental defects mimic of osdcl4-1 and osrdr6-1.

Song et al., 2012 (a) Plant Journal

Letter

Clusters and superclusters of phased small RNAs in the developing inflorescence of rice

Cameron Johnson,¹ Anna Kasprzewska,² Kristin Tennessen,¹ John Fernandes,³ Guo-Ling Nan,³ Virginia Walbot,³ Venkatesan Sundaresan,^{1,4} Vicki Vance,^{2,4} and Lewis H. Bowman^{2,4}

Table 2. Features of clusters with dominant source tissue

	21-mer clusters					24-mer clusters				
	Totals	Differentially- expressed ^a	In phase ^b	Loci ^c	Repeats ^d	Totals	Differentially- expressed ^a	In phase ^b	Loci ^c	Repeats ^d
Dominant tissue (i.e., >50%) ^e										
RoApx	7	1	1	3	0	3303	166	0	528	1900
ShApx	5	2	0	2	0	6750	354	0	1288	2719
Infl	969	671	828	75	68	4822	466	35	897	1973
Leaf	40	21	0	17	14	4479	708	1	764	2530
No dominant tissue ^f	8	1	2	1	2	10,411	98	2	1756	5137
Total	1029	696	831	98	84	29,765	1792	38	5233	14,259

^aStatistically significantly differentially-expressed clusters with *P*-values less than or equal to alpha cutoff of 0.001.

^bNumber of clusters that are considered in phase with FDRs of 1.2% and 10% for the 21-mer and 24-mer clusters, respectively.

^cNumber of clusters overlapping at least one annotated protein coding gene locus.

^dNumber of clusters overlapping at least one repeat annotation.

^eTissue dominance at >50% of total normalized read count.

^fClusters in which no source tissue constituted >50% of normalized reads.

- Many 21- and 24-nt phased RNA (phasiRNA) were identified in rice panicle based on phased array like tasiRNAs.
- miR2118 and miR2275 are predicted to trigger 21- and 24-nt phasiRNAs.

Johnson et al., (2009) Genome Res

Differential effects of OsDCL4 on accumulations of 21- and 24nt phased small RNAs

- Over one thousand 21nt phased RNA loci were largely dependent on OsDCL4
- The accumulation of 24nt phased RNAs was moderately affected by OsDCL4
- Both 21- and 24nt phased RNAs were RDR6 dependent

Which OsDCL is responsible for 24nt phased RNA biogenesis?

OsDCL3a and OsDCL3b

24nt phasiRNAs are processed by OsDCL3b

Conserved and non-conserved siRNA biogenesis pathways

24nt phased RNAs are processed by OsDCL3b, but not OsDCL3a

Song *et a*l., 2012 (a) Plant Journal Song *et al.*, 2012 (b) Plant Journal

Wei et al., (2014) PNAS

RNA-directed DNA methylation (RdDM) pathway in Arabidopsis

 DCL3 is responsible for 24-nt siRNA heterochromatic siRNAs biogenesis, which tend to be derived from repeats and transposable elements.
Loss of function DCL3 line displays no obvious development phenotypes.

> Gasciolli, V., et al (2005) Curr Biol 15, 1494-1500. Henderson, I.R., et al (2006) Nat Genet 38, 721-725. Chen, X.M, (2009), Annu Rev Cell Dev Bi 25, 21-44.

DNA Methylation Mediated by a MicroRNA Pathway

Liang Wu,^{1,2,3} Huanyu Zhou,^{1,3} Qingqing Zhang,¹ Jianguang Zhang,¹ Fangrui Ni,¹ Chang Liu,¹ and Yijun Qi^{1,*} ¹National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China ²College of Life Sciences, Beijing Normal University, Beijing 100875, China ³These authors contributed equally to this work *Correspondence: qiyijun@nibs.ac.cn DOI 10.1016/j.molcel.2010.03.008

Wu et al., 2010 Molecular Cell (Qi's lab)

OsDCL3a knockdown plants display pleiotropic phenotypes affecting important agricultural traits

OsDCL3 processes genome-wide 24nt siRNAs

OsDCL3-dependent siRNAs significantly enriched in MITE repeats

Transposable element (TE)

- First identified as regulatory elements in maize by McClintock (1950's)
- Ubiquitously present with high abundant in plant and animal genomes
- Transposition of TEs is a major driving force for genome evolution
- Host genomes have evolved diverse mechanisms to limit harmful mobilization
- Epigenetic regulation has been implicated to control TE activities

Barbara McClintock: Winner of the Nobel Prize in 1983

MITEs are the highest-copy-number TEs in rice

Mainly distributed in gene-rich regions, especially in upstream, downstream and introns of genes.

Distinct heterochromatin and small RNA distribution in Arabidopsis and rice

,0 Mb	,5	,10	15	20	,25	30 Mb		
							Chr. 1	
t proposition National Advisor	i sa kadada Miki						Chr. 2	
+ helter		ling a conserva- diata da a antes	y vo pary navy na Na ministry navy navy				Chr. 3	
l far stradiot. Franklashol	riveriaan y piy	lie din cara					Chr. 4	
-		ananyanyan ya Nanin katan <mark>i</mark> ya					Chr. 5	

Rice small RNAs more widely distributed on chromosomes

Fransz *et al.* (1998). Plant J Cheng *et al.* (2001). Genome Res

Nobuta et al., (2007), Nat Biotech Lu, et al., (2006), Genome Res.

MITEs correlate with 24nt siRNAs distribution in up-regulated genes

Up-regulated genes in OsDCL3a RNAi lines

WΤ

3a-3

3a-1

Mean hits-normalized siRNA abundance in RP25M

15

10

5

0

-2kb TSS

sRNA

TEs and Other repeats

679 Up-regulated genes, P-value <0.01 and Fold change >1.5

TTS 2kb

Up-regulated genes involved in many biological processes including GA and BR homeostasis

The dwarf phenotype of OsDCL3a RNAi lines may due to GA deficiency

Up-regulated genes reduced MITE associated 24nt siRNAs

>GA biosynthesis is reduced.

≻GA biosy

EUI functions as a GA deactivating enzyme in rice

Zhu, Y et al., (2006) Plant Cell 18, 442-456. Luo, A et al., (2006) Plant Cell Physiol 47, 181-191.

GA catabolism gene (*EUI*) are epigenetically regulated by MITE-derived 24nt siRNAs

Hc-siRNAs associated with MITE impact adjacent genes controlling GA and BR homeostasis

Transposable elements of distinct chromosomal niche in rice

Modified figure in Feschotte et al., (2002) Nat. Rev. Genet.

Acknowledgement

Xianwei Song Bin Liu Liya Wei Pingchuan Li Lianfeng Gu Lijia Ma Ming Zhou Xiekui Cui Yong Ding Zhiyu Chen

Dr. Blake Meyers Dr. Pam Green Jixian Zhai Prof. Yuezhi Tao Dr. Dekai Wang Prof. Chengcai Chu Prof. Yongbiao Xue Prof. Xiujie Wang Prof. Fangpu Han Dr. Xingwang Deng

State Key Lab of Plant Genomics

Collaborators